Poloidal Rotation and Transport Barrier Formation in the Core of TFTR Plasmas

R. E. BELL

Princeton Plasma Physics Laboratory, Princeton NJ, 08543

39th Annual Meeting APS Division of Plasma Physics

> 19 November 1997 Pittsburgh, PA

Outline

- Background
- Precursor to ERS transition
- New measurements of v (r), inversion to provide local values
- Er measurements
- Shearing rates and transition threshold
- Comparison to Neoclassical predictions
- MHD bursts associated with precursor

Transport Barrier Forms in Plasma Core, Near Minimum in q Profile

TFTR

- Both particle and energy confinement improve inside shear reversal region
- Shear reversal not sufficient for transition

- Model of E×B shear stabilization is fundamental to our present understanding of transport barriers at the plasma edge and in the core.
- Transport barrier formation linked to E_r and a reduction in turbulence due to E×B shear.
- At the H-mode edge, E_r associated with impurity v at time of transition.
- Recent measurements on TFTR point to the importance of v in core barrier formation in reversed shear plasmas.

The Physics Of Bifurcations Is Central To Understanding TFTR ERS plasmas

TFTR

- Before transition, n_e,T_e, T_i, V , n_z profiles are indistinguishable
- Key physics must be nonlinear

Bifurcation In Poloidal Velocity Precedes ERS Transition

- Local carbon pressure give earliest indication of the bifurcation in transport, change in n_e(0) 50 ms later.
- 50-100 ms before transition, a local change in carbon poloidal rotation is observed for ERS discharge.

Shearing Rate:

$$E_{\times B} = \frac{(RB)^2}{B} - \frac{E_r}{RB}$$

For the outer midplane,

$$E_{\times B} = \frac{E_r}{B} \frac{1}{E_r} \frac{E_r}{R} - \frac{1}{B} \frac{B}{R} - \frac{1}{R}$$

Radial Force Balance Equation:

$$E_r = \frac{p}{eZn} + v B - v B$$

- Er can be affected through each of these terms.
- Evaluation of E_r has typically been to sum terms on right side of equation.
- Core v usually evaluated from neoclassical theory

TFTR Poloidal Rotation Diagnostic Addresses Problems of Core v Measurements

- High Throughput
 - throughput > 2000 × CHERS system
 - Linefits to 1-2 % of pixel width
 - Uses intrinsic and CX emission
- High Spatial Resolution
 - 29 spatial channels (R < 3.5 cm)
- Inversion
 - Recovers local velocity
 - Bell, Rev. Sci. Instrum. 68,1273 (1997)
- Opposing Views
 - Removes systematic effects
 - Cancels view dependent effects of Charge Exchange Emission
- Strictly Vertical Orientation
 - No toroidal velocity component

Larger Poloidal Velocity Precursors Often Seen With Lower Toroidal Field

- Poloidal velocity peaks then relaxes with several oscillations
- Transient excursion in poloidal velocity appears on 1 or 2 sightlines only
- Velocity is zero after pellet injection

A Narrow Large Poloidal Velocity Shear Layer Located Just Inside q_{min}

- Inversion deepens and narrows apparent shear region
- "Artifact" due to misalignment of shear layer from sightlines
- Shear layer narrower than sightline spacing (3.5 cm)
- Chordal data limits (v)(r) 220 km/s cm
- Location of velocity shear layer, between pressure gradients and low magnetic shear: Reynold's Stress?

Schematic of Poloidal Rotation in TFTR Reverse Shear plasmas

- Carbon ions generally rotating in the ion diamagnetic direction
- Transiently, carbon poloidal flow reverses direction in narrow radial region
- Deuterium ion flow not measured

Large E_r Transient Appears on MSE Measurements

- E_r transient easily separated from slowly varying pitch angle
- Adjacent MSE channels detect little or no contribution from transient.

All Terms In Radial Force Balance Equation Measured

$$E_r = p/(eZn)+v B - v B$$

$$\begin{pmatrix} U \\ Y \\ -100 \\ U \\ -200 \\$$

- E_r measurements agree, (averaged over 3.5 cm)
- E_r transient = poloidal flow

"Dithering" ERS Correlates Shearing Rate With Core Barrier Formation

- Peakedness factor show times of improved confinement
- Marginal conditions for transition indicate nominal transition threshold value for shearing rate
- Precursor spike many times larger than threshold for transition

B_T Variation of Transition Threshold Needs Reevaluation

- Measured threshold _{E×B} for dithering discharge at 3.4 T near ^{max} in B_T scan
- With large E_r transients, E×B >> max
- Previous threshold for transition was evaluated with neoclassical v

Carbon v , E_r Offset from Neoclassical Values

- Neoclassical v is near zero prior to ERS transition
- Measured v is zero after pellet injection, then increases
- After transition both neoclassical and measured v decrease with increasing pressure
- Nearly constant difference is maintained during ERS; larger difference at smaller radii

MHD Bursts Occur During Relaxation of E_r/v Excursion

- ECE measures fluctuation at shear layer
- Timing of MHD Burst: Drop in E_r of inner channel with increase in outer channel
 => during motion of shear layer?

MHD Bursts Occur in Two Frequency Ranges

- Low frequency (50 kHz) mode observed by ECE to occur at the poloidal velocity shear layer
- Low frequency mode has toroidal mode number n=1
- Best fit to high frequency mode (250 kHz) is n=0
- Low frequency mode usually occurs first
- High frequency mode sometimes appears alone

Summary

- New local v measurements in core plasma
- E_r, v precursor to ERS transition
- Important to measure all quantities in radial force balance equation
- High spatial resolution important, local measurement could "miss" narrow shear region
- For precursor $E \times B >>$ critical shearing rate
- Measured carbon v differs from neoclassical v
- MHD bursts near shear layer
 - -50 kHz, n=1
 - 250 kHz, n=0

CHALLENGES/ PUZZLES:

- What is the cause of the transient poloidal flow? How is the poloidal viscosity overcome?
- What is the source of the discrepancy with neoclassical carbon v?
- What are the MHD modes during v excursion? Clue to understanding dynamics of precursor.

